# Fermi National Accelerator Laboratory
FERMILAB-CONF-88/46-T
May, 1988

Schrédinger Approach to Ground State Wavefunctionals

William A. Bardeen®
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, IL 60510

Abstract

The nonperturbative structure of the QCD vacuum is studies in two and four dimen-

sions using a Schrodinger approach to quantum field theory.

*Talk presented at the Workshop on Variational Methods in Quantum Field Theories—
Wangerooge, September 1-4, 1987

# Operated by Universities Research Association Inc. under contract with the United States Department of Energy



Introduction.

The Schrddinger approach to quantum field theory permits a direct
study of the vacuum structure through the analysis of the vacuum
wavefunctionals of the theory. Various properties of this vacuum
structure should reflect the nature of chiral symmetry breaking, color
confinement and other nonperturbative features of the complete theory.
The Schrodinger approach may aiso allow the study of vacuum structure
through the application of variational methods and the use of trial
wavefunctionals.

in this talk, | will present some resuits of using the Schrodinger
approach to study quantum chromodynamics in two and four dimensions.

in two dimensions, QCD can be systematically analysed'! through the

use of the targe N expansion where N is the number of calors. In this
case, we can study both the vacuum structure and the nature of the
elementary excitations of the system. In four dimensions, nonperturb-
ative aspects of the vacuum structure of both the gluon and quark
wavefunctionals have implications for color confinement and chiral
symmetry breaking.

QCD in Two Dimensions.

Quantum chromodynamics describes the interactions of colored
quarks with the color Yang-Milis gauge fields. In two dimensions there
are no transverse gauge degrees of freedom in the gauge fields, and the
gauge fields may all be eliminated by an appropriate choice of gauge.
Indeed, 't Hooft'2} used the tight-cone gauge to study the spectrum of the
meson bound states.  Much further work was also done within this
framework!3), on the structure of the scattering amplitudes and many
other properties of the theory.  Here, confinement is not the issue as
the light-cone gauge produces a confining linear potential in two
dimensions. However, the light-cone gauge can not easily be used to
study questions related to the vacuum structure. These questions can
be analysed by combining the usual couiomb gauge formufation with the
large N¢ limit.

The large N limit is defined by the formal limit where the gauge
coupling constant, o = g2/47, is taken to zera with the combination,
oe'Ne fixed. In this limit, the nonabelian gauge structure dictates that
the leading contributions are given by planar diagrams with the fewest
number of internal quark loops. Nonptanar gluon interactions are
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suppressed by O(1/N?) and an internal quark loops Dy O(1/Ng).

The standard coulomb gauge is specifed by V-A = 0 which Implles
A = 0 in two dimensions. Hence, the gauge fields generate onlty the
ysual coulomb potential interaction between the quark fields. These
interactions are fully contained in the coulomb gauge Hamiltonian

H o= fdx W2* (e V+Bm)¥, = (§7/2) fdxfdy Jp2(x)-o3(x) (-VA 7 (xy) (1)

where the color charge density is given by Jo@(x) = (1/4)[¥ " A3¥].

[n leading N, this Hamiltonian is of order Nc, and the Hartree
approximation is exact. [ will use the best plane-wave ground state
wavefunctional as a trial vacuum state. Now | expand the quark field in
terms of particie and antiparticle creation and destruction operators
using a general piane-wave basis

¥a(x) = fdp {upTp()Apa * vpf*p(x)B ol [2]

where fp(x) = elPX/(270)'/2 and the two component spinors are given by
up = (cos(ep/Z), sin(ep/z)) and v, = (sin(ep/2, cos(ep/2)). This
expansion is parameterized by the chiral angles, &p, with &_p = -©p.
The trial vacuum state, lV)ep. is defined as the state annihilated by the
particie and antiparticle destruction operators and is a functional of the
set of chiral angles, {ep}. This set of chiral angles can be viewed 3as
variational parameters for the ground state wavefunctionat.

The vacuum energy density is simply computed through normal
ordering the Hamiltonian using this basis with the result

Eg = <V|H|V>gp = (Ne/210( - dp [p-sin(ep) * m-cos(6p)]
(3]
+ o Ne(1/2)fap fdq [sin®((0-64)/2)/(p-a)] 1.

It is clear there is no explicit coulomb singularity at the point p=q. The
vacuum state is found by varying the chiral angle, &5, in Eq.[3]. There is
a nontrivial solution for 6y even in the chiral limit, m=0. In this case
the solution has the form given in Fig.[1] where it is compared to the
naive massless limit and to the normal massive case. It is clear that
an infrared mass is spontaneously generated for small p, but that this
mass vanishes quickly at high momenta, consistent with the operator
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product expansions applied to this system. This mass generation
signifies the spontaneous breaking of chiral symmetry in the large Ne
limit which can also be seen through the chiral condensate of the mass
operator,

¥¥ogp = - (Ne/277) fap cos(ep) [4]

Hence, the massiess meson state found by 't Hooft'® must be identified
as the chiral Goldstone boson.  This result is inconsistent with the
usual no-ordering theorems in two dimensions. However, the condensate
in £q.[4] will disappear when loops involving the Goldstone boson are
included; these contributions are higher order in 1/N. but infrared
divergent in the chiral limit in two dimensions.

At the minimum for 6p,. there are no pair creation terms left in H,
and the normal ordering produces a single particle energy for the quarks
and antiquarks,

Ep = p-sin(ep) + m-cos(8p) + xe'Ne(1/2)fdq E(cos(ep-eq))/(p-q)zl (5]

Qur solution for the gap equation and the quark self-energy energy can
also be obtained from the Schwinger-Dyson equations where the inverse
quark propagator is given by Sp~'(p) = ¥gPg - K,Epsin(ep) - Epcos(ep).

However, it is essential to use the correct i€ prescription which may
require that particles have negative energy at low momentum. This can
easily be seen from the expression for the particle energy in £q.[3]. If
we use the principle value definition of the coulomd singularity, then the
interaction term can yield a large negative contribution at low energy.
The quarks are apparently tachyonic or even have negative energy near
the chira! limit. This result would seem absurd as we would to be able
to lower the vacuum energy by adding quarks or antiquarks to the vacuum
state we have already constructed. Indeed, if the usual cluster
properties were to hoid, this would be true.  However, this theory has
confinement because of the linear coulomb potential, and the usual
cluster properties are not vatid. The attempt to lower the vacuum
energy using states with low momentum quarks and antiquarks will
result a large, positive interaction energy due to the confining couiomb
interactions. This prescription is no mistake as | have established the
vacuum stability directly from a variational calcutation. These
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questions can anatysed further by studying the etementary excitations

which occur above the variationai groundstate.
The elementary excitations are color singlet mesons which are made

as relativistic quark-antiguark bound states. These states may be
studied by diagonalizing the O(1) terms in the Hamiltonian, H, of Eq.3];
note that the vacuum energy of EqQ.[3] was O(Ng). For states with a few
quark and antiquark pairs added to the leading N vacuum state, the O(1)
terms in the Hamiltonian are given by the single particle energies of
Eq.[5] and certain terms extracted from the normat! ordered four body
coulomb interaction. 1 will study these terms using a large N boson-
ization of QCD which is valid to this order in the farge N expansion.
The coulomb interactions can all be expressed in terms of certain color
singlet fermion bilinears which are normatized according to our large Ne
analysis. They include meson operators,

C(k,(]) = Bquka/(NC)l/2' C+(k,Q) = A+akB+qa/(Nc)1/2, [6]

and number operators, NAK.qQ) = A*3-Aga, NB(k.Q) = B*aBg®.  Acting
on states with a few quark and antiquark pairs added to the leading N¢
vacuum, the meson operators create and destroy properly normalized
color singlet pairs, and the number operators have matrix elements of
O(1).  In the large N. limit these meson operators become canonical
boson operators with commutation relations,

[Ck,q), C*(k',q")] = 8(k-k")8(q-q") + O(1/N¢) (7]

In evaluating the normal-ordered coulomb interactions, the O(!) terms
are only those which involve the meson operators,

V = (g%-/2) faxfay :Jp3(x)-Jgl(x): (-V2)7H(x,u)
= ~oe:Ne Jop’ fdpfdq’fdg :
{ 5(p'+q'-p-q)C*(p'.4)C(p.q) [cos((8y-6p)/2) COS((8-0)/ 2)/(p'-p )]
+8(p'+q+p+q) C* (p',q")C* (4, {5In((8+6p)/2) sin((84+6¢)/2)/(p'+p)?]

+S(D‘+q’+p+q)-C(p'.q')C(q.p)-{sin((epwep)/z)-sin((eq-+eq)/2)/(p'+p)2] }



+ O(1/NQ)

The potential terms are quadratic in the canonical boson operators. The
kinetic energy remains quadratic in the fermion operators,

Hor = fdp Ep A™35-Ana + fdp Ej B 5587 (9]

| can now use a trick to replace the fermion kinetic energy by a boson
kinetic energy which is equivaient to this order in the N; expansion.
The boson kinetic energy,

Hop = fdp’ fdp (Epr+Ep) C*(p',p)C(P"p) [10]

has exactly the same matrix elements for color singlet meson states as
the fermion operator in Eq.[9].

The full Hamiltonian, H = Hg, + V, is now a quadratic form in
canonical boson operators and may be diagonalized by a boson Bogoliubov
transformation of the form,

C(p,Q) = X { xn(P.0)Dr(p*a) + Bp(p,a@)D* y(-p-q) } (11

where n labels the meson bound states and {«(P.q). Bp(p.q)} are the
bound state meson wavefunctions. The confining coulomb potential
produces an approximately tinear spectrum of meson bound states as
found by ‘'t Hooft'? in the light-cone gauge. The coulomb singularity
observed in the single particie energy of Eq.[S] contributes to the boson
kinetic energy operator but is precisely cancelled by a similar term in
the potential operator of Eq.[8] which comes from the p-p timit of the
C*{(p’.q’)C(p,q) term.  This is expected since there can be no infrared
divergent coulomb singularity generated by adding color singlet
quark-antiquark pairs to an otherwise stable vacuum. [t was only the
artificial separation of the kinetic and potential terms which seemed to
produce the coulomb singluarity.  This separation does not have any
meaning in a confining theory where the quarks do not share a cluster
property. It is an interesting feature of this calculation that the
lowest energy bound state is massless in the chiral limit, m=0. For a
system with a linear, confining interaction potential there must be a
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positive binding enerqy for the meson states. Hence, a massiess bound
state can be achieved only ir the kinetic energy has a negative
expectation value in the bound state; this is consistent with our
observation of the behavior of the single particle quark energy, Ep, near
the chirai limit.

The boson Hamiltonian derived above implies a set of bound state
equations for the meson wavefunctions. Although the mesons are
quark-antiquark bound states, the physical amplitudes must inciude
mesons which go both forward and backward in time.  In other words
the boson Bogoliubov transformation used to diagonalize the Hamiltonian
introduces boson pairs into the meson states as well as into the vacuum.
The vacuum boson pairs produce nontrivial four-quark congensates in
addition to the two-quark condensates already found by the leading N
calculation. 1t is easily shown that the bound state equations greatly
simplify in the infinite momentum frame where pair creation is
suppressed and the simple bound state Schrédinger equations of 't Hooft
are recovered.

| have noted that the solution exhibits spontanecusiy broken chiral
symmetry which is inconsistent in two dimensions. 1 have calculated
the chiral condensate, <¥¥>, and found the massless Goldstone boson in
the bound state spectrum.  These features are expected in the large N
expansion which suppresses the boundstate Goldstone boson fluctuations
as their effective couplings shoutd be O(1/(N-/27)'/2).  However, the
infrared flucuations of the Goldstone field in two dimensions will
compensate this suppression for finite N., and the two-quark chiral
condensates will be expected to vanish. Of course, this means that
there must be many quark-antiquark pairs in the vacuum, and our
bosonization assumptions are not quite correct.  However, | expect the
pairs are only those associated with the Goldstone boson bound state,
and the calculation of the heavy meson states will be unaffected.

I have used the regular coulomb gauge to study the vacuum structure
and the elementary excitations of QCD in two dimensions. I have
systematically diagonalized the QCD Hamiltonian using the large Nc
expansion.  In leading N¢, | have computed the vacuum wavefunctional
for QCD and have shown it to be equivalent to a variational caiculation
of the vacuum structure. In this order there exists a stable ground
state with a nontrivial chiral structure.  In next order in the N
expansion | have studied the elementary exicitations of the system
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which are the color singlet meson bound states. | have demonstrated
that a complete bosonization of QCD can be achieved using the large N
limit. | have also shown how this bosonization leads directly to a dual
meson description of QCD. The massless meson state discovered by 't
Hooft should be seen as the Goldstone boson of the spontaneous chiral
symmetry breaking which appears in the theory although the chiral
condensates must disappear when the Goldstone flucuations are included.
This calculation complements the usua! light-cone gauge calculation
where it is difficult to directly determine information on vacuum
structure.

QCD in Four Dimensions: Gluons

The perturbative treatment of quantum field theory is usually
described in terms of an oscillator, or particle, basis for the quantum
fields. Feynman!® has emphasized the relevant features of the ground
state wavefunctionai for qualitative questions such as confinement and
chiral symmetry breaking. | will look at properties of the vacuum
wavefunctional that have an impact on the valence gluon structure.

In pure photodynamics, the Hamiltonian is given by

H=(1/2) Jdx { E¥(x) + B%(x) ] [12]

where the magnetic field is given by B(x) = 3xA(x) and A(x} and F(x) are
canonica! variables.  The exact vacuum state can be represented in
terms of the Schrédinger wavefuncional,

®(A) = exp { - (1/4) fdxfdy B(x)}-B(y) Alx-y) } [13]

where the correlation function is A(x-y) = 1/2m%(x-y)2.  This gauge
invariant, gaussian wavefuncional describes massless, transverse
photons.

In the Schrédinger picture of QCD, the vacuum wavefunctional should
preserve the nonabelian gauge invariance and reduce to the perturbative
gluon theory at short distance. A simple extension of the photodynamic
wavefunctional would yield,

®(A) = exp { - (1/4)fdxfdy B3, (x)-58D, 1(x,4,A)BD\(y) Alx-y) ) [14]
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where the nonabelian magnetic fietd is given by B3(x) = BxA(x) *
igrabCAP(x)xAC(x) and S8 (x.y.A) is an octet string operator. |
reinterpret this wavefunction as a transformation from a supervacuum
state to the physical ground state.

®(A) = exp { - (1/4)fdxfdy B2 (x)-530, |(x.u. A)BD (y) Alx-y) } @g  [15]

where @, is the supervacuum state with E3(x)®; = 0. The exponential
represents the transformation which puts octet strings into the vacuum
wavefunctional where A(x-y) is the weight for the strings of length
(x-y)2.  In perturbation theory, A(x-y) is the same as the photon theory
with logarithmic corrections and determines the long range correiations
in the wavefunctional, A(x-y) = 1/272(x-y)?

For a confining vacuum, we expect no long range correlations in the
wavefunctional, and A(x-y, should be damped. Hence, there are no long
strings in the vacuum: the short strings are required to reproduce
perturbative QCD at short distance. The infrared components of the
electric field are expected to annihilate the vacuum state, E3(x)|gp®(A) =
0. In principie, 1 could use the wavefunctional in Eq.[15]) as a
variational trial state and determine A(x-y) by a variationai principle.
There are severe difficulties in calculating matrix elements due to the
functional measure of the A(X) integrals as well as gauge problems, etc.
Some of these problems could be solved through a lattice formulation of
the variational problem.

instead we will consider a quasi-perturbative approach which
assumes the approximate validity of a vacuum wavefunctional with a
damped correlation function, ie. A(x-y) = exp(—plx-gl)/21t2(x—g)2. Then,
we compute using effective gluon degrees of freedom, ie. an harmonic
oscillator approximation. The ground state is characterized by a set of
oscillator frequencies for the gluons, wy = k%A(k).  The infrared
singlularity of the perturbative form of A(k) produces the usual linear
dispersion relation, wy = JK? . The damped correlation function is not
infrared singular and gives a quadratic behaviour at low momenta, wy =
k2-A(0). The precise form of the damping is not essential.  This
behavior is not that of normal massive giuon which would produce, wy =
JKme instead, the gluon appears as a nonrelativistic, massive
particle but with no mass gap. This behaviour is consistent with a
confinement picture where the quadratic Dbehaviour could enhance
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infrared attraction of gluon exchange interactions instead of the usual
screening behavior of massive gluons.  In color singlet boundstates, the
gluons will be dynamically massive and the positive binding energy of
the confining interactions witl produce a positive rest mass for the
glueball boundstates. This should be contrasted with the quark picture
discussed for QCD, where the negative quark kinetic energy was seen to
produce the massless Goldstone boson state.

while some aspects of this picture of gluons are clearly a property
of the coutomb gauge formulation, it may give a useful representation of
the confining vacuum structure which affects the nature of valence
gluons in boundstates.  In principle, we could use the wavefunctions of
£q.[14,15] as a basis of a variational calculation to determine the
correlation function, A(x). The long range correlations are expected to
be trivial while the short range correlations are those of perturbative
QCD.  Although the vacuum wavefunctional may be simple, an accurate
representation of the gauge field measure is needed to compute matrix
elements. This measure is difficult to formulate in the continuum and
various lattice formulations of the measure are discussed in other
contributions to this workshop.

QCD in Four Dimensions: Quarks

A similar analysis of fermion structure is possible but complicated
by the expected nature of long range correlations and the requirement of
gauge invariance. Wwe may proceed to represent the fermion vacuum
wavefunctional as a transformation from a supervacuum state to the
physicai ground state. The supervacuum state should contain the
correct long range correlations, and a transformation should be used to
generate the proper short range correlations of perturbative QCD.
Gauge invariance must be preserved in the process.

An approximate supervacuum state can be written as the product of
the trivial gluon wavefunction, ®go = 1, and a fermion wavefunction &g,
To satisfy the gauss law constraint of gauge invariance, the fermion
wavefunction must be an eigenstate of the local color charge density
operator, Jya(x),

G(X)q’g = {D‘E(X)*Jga(X)}Qgg'OfU = OQU {Jua(X)}QfD = 0. [!6]

The long range correlations dictate the particular solution for ®g5.  FoOr
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the case of spontaneously broken chiral symmetry, a sotution like that of
QCD, is required. and the fermion vacuum should correspond to that of an
infinitely heavy free quark with A(x)®ro = B(x)®fg = 0 where A(x) and
B*(x) are, respectively, the upper and lower components of the quark
field. For a free massive quark, this state must be transformed by an
appropriate Bogoliubov transformaton to the physical vacuum state. For
the QCD state, this transformation must be made consistent with gauge
invariance but preserving the short distance structure of perturbative
QCD. An approximate fermion trial state would be given by

O = exp{ - [dxfdy ¥ AT 0%y, A)ec-D¥p(Y)-Ap(x-y) } Oy [17]

where T,D(x,y,A) is a color triplet string operator, and Ag(x-y) is the
fermion correlation function.  This fermionic transformation obviously
generates color triplet strings in the vacuum similar the gqluonic
transformation which generated the color octet strings in Eq.f15]. At
short distance, the effects of the color strings are not expected to be
important, and the correlation function must be chosen to produce the
correct current quark masses. At long distance, the correlation
function, Ag(x-y), will be damped as in the gluonic case and long color
triplet strings will be suppressed in the ground state wavefunctional.
The incomplete Bogoliubov transformaton has the effect of generating
the equivalent of a constituent mass for the guarks.  From this view,
four dimensional quark structure is quite similar to the picture of chiral
symmetry breaking found in QCD,.  As in QCD,, the long distance chiral
structure given in EQ.[17] (s incomplete as the direct effects of the
Goldstone bosons have been neglected. Hence, a qualitative picture of
the valence quark and gluon structure can be obtained from the
knowledge of the QCD groundstate wavefunctional without detailed
solutions. However, the problem of using these wavefunctionais
remains a challenge due to measure problems associated with the gauge
field integrations in the continuum theory.

Conclusions.

[ have shown how the large N. expansion can be used to obtain a
systematic solution of QCD in two dimensions. The gauge interactions
produce a nontrivial chiral structure in the groundstate wavefunctional
when analysed in leading order in the N expansion. By diagonalizing
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the Hamiltonian in next order in the N expansion, the dynamical
equations for the complete set of meson bound states are obtained. The
large N limit permits a systematic bosonization of the quark theory and
produces a dual meson theory of QCD.

A somewhat similar approach was used to analyse the vacuum
structure in four dimensional QCD. Here the trial groundstate
wavefunctional was given as a transformation from a locally color
singlet, supervacuum state. The supervacuum state incorporated the
correct long range correlations of the physical vacuum state. The
effective "Bogoliubov” transformations generated color octet and cotor
triplet strings in the vacuum. In perturbation theory, the vacuum
would include infinitely long strings due to the nature of the correlation
functions, Ag(x) and Ag(x). In the QCD ground state, these long strings
are expected to be damped, but the short strings are still required to
produce the perturbative QCD structure at short distance. Hence, we
may, indeed, have good knowledge of the ground state wavefunctionals in
this formulation as the wavefunctional are trivial at long distance and
perturbative at short distance. Unfortunately, to make real use of this
knowledge of the QCD vacuum wavefunctional requires good knowledge of
the gauge field integration measure which is presently lacking in the
continuum formulation of the theory.
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Figure 1. Vvacuum chiral angle, @, for massless and massive
free fermions and for the dynamically generated chiral angle
in massiess QCD in two dimensions.



